14 research outputs found

    An integrative semantic framework for image annotation and retrieval

    Get PDF
    Most public image retrieval engines utilise free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. Our semantic retrieval technology is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. We also present our efforts in further improving the recall of our retrieval technology by deploying an efficient query expansion technique

    Towards design and implementation of Industry 4.0 for food manufacturing

    Get PDF
    Today’s factories are considered as smart ecosystems with humans, machines and devices interacting with each other for efficient manufacturing of products. Industry 4.0 is a suite of enabler technologies for such smart ecosystems that allow transformation of industrial processes. When implemented, Industry 4.0 technologies have a huge impact on efficiency, productivity and profitability of businesses. The adoption and implementation of Industry 4.0, however, require to overcome a number of practical challenges, in most cases, due to the lack of modernisation and automation in place with traditional manufacturers. This paper presents a first of its kind case study for moving a traditional food manufacturer, still using the machinery more than one hundred years old, a common occurrence for small- and medium-sized businesses, to adopt the Industry 4.0 technologies. The paper reports the challenges we have encountered during the transformation process and in the development stage. The paper also presents a smart production control system that we have developed by utilising AI, machine learning, Internet of things, big data analytics, cyber-physical systems and cloud computing technologies. The system provides novel data collection, information extraction and intelligent monitoring services, enabling improved efficiency and consistency as well as reduced operational cost. The platform has been developed in real-world settings offered by an Innovate UK-funded project and has been integrated into the company’s existing production facilities. In this way, the company has not been required to replace old machinery outright, but rather adapted the existing machinery to an entirely new way of operating. The proposed approach and the lessons outlined can benefit similar food manufacturing industries and other SME industries

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    Data-Driven Techniques for Low-Cost Sensor Selection and Calibration for the Use Case of Air Quality Monitoring

    Get PDF
    With the emergence of Low-Cost Sensor (LCS) devices, measuring real-time data on a large scale has become a feasible alternative approach to more costly devices. Over the years, sensor technologies have evolved which has provided the opportunity to have diversity in LCS selection for the same task. However, this diversity in sensor types adds complexity to appropriate sensor selection for monitoring tasks. In addition, LCS devices are often associated with low confidence in terms of sensing accuracy because of the complexities in sensing principles and the interpretation of monitored data. From the data analytics point of view, data quality is a major concern as low-quality data more often leads to low confidence in the monitoring systems. Therefore, any applications on building monitoring systems using LCS devices need to focus on two main techniques: sensor selection and calibration to improve data quality. In this paper, data-driven techniques were presented for sensor calibration techniques. To validate our methodology and techniques, an air quality monitoring case study from the Bradford district, UK, as part of two European Union (EU) funded projects was used. For this case study, the candidate sensors were selected based on the literature and market availability. The candidate sensors were narrowed down into the selected sensors after analysing their consistency. To address data quality issues, four different calibration methods were compared to derive the best-suited calibration method for the LCS devices in our use case system. In the calibration, meteorological parameters temperature and humidity were used in addition to the observed readings. Moreover, we uniquely considered Absolute Humidity (AH) and Relative Humidity (RH) as part of the calibration process. To validate the result of experimentation, the Coefficient of Determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) were compared for both AH and RH. The experimental results showed that calibration with AH has better performance as compared with RH. The experimental results showed the selection and calibration techniques that can be used in designing similar LCS based monitoring systems

    A note on exploration of IoT generated big data using semantics

    No full text
    Welcome to this special issue of the Future Generation Computer Systems (FGCS) journal. The special issue compiles seven technical contributions that significantly advance the state-of-the-art in exploration of Internet of Things (IoT) generated big data using semantic web techniques and technologies

    Ontology Development for Detecting Complex Events in Stream Processing: Use Case of Air Quality Monitoring

    No full text
    With the increasing amount of data collected by IoT devices, detecting complex events in real-time has become a challenging task. To overcome this challenge, we propose the utilisation of semantic web technologies to create ontologies that structure background knowledge about the complex event-processing (CEP) framework in a way that machines can easily comprehend. Our ontology focuses on Indoor Air Quality (IAQ) data, asthma patients’ activities and symptoms, and how IAQ can be related to asthma symptoms and daily activities. Our goal is to detect complex events within the stream of events and accurately determine pollution levels and symptoms of asthma attacks based on daily activities. We conducted a thorough testing of our enhanced CEP framework with a real dataset, and the results indicate that it outperforms traditional CEP across various evaluation metrics such as accuracy, precision, recall, and F1-score

    Emerging Exploration Strategies of Knowledge Graphs

    No full text
    The utilization of semantic web technologies has led to the development of knowledge graphs represented as triples that allow for the exploration of specific and cross-domains. Despite the advantages of semantic links between entities in facilitating user exploration, they can also lead to an overwhelming number of exploration choices that can cause confusion, frustration, uncertainty, and a sense of being lost in the abundant graph, particularly for users who are not familiar with the domain. Thus, identifying exploration strategies is critical to improving user exploration and increasing exploration utility. This study aims to identify exploration strategies that promote knowledge utility (i.e., increase users’ domain knowledge) and exploration experience (i.e., provide users with a positive and pleasant feeling). To accomplish this goal, an experimental user study was conducted, involving lay users in the musical instrument domain, where they were presented with an exploration task and then allowed to freely explore musical instruments. Parameters related to exploration paths were used to analyze the exploration patterns that users follow during their exploration. The findings reveal exploration strategies that promote knowledge utility and exploration experience. This research contributes to the literature on intelligent methods of guiding user exploration through knowledge graphs to enhance exploration effectiveness, which can have broad applications in knowledge graph utilization
    corecore